If it's not what You are looking for type in the equation solver your own equation and let us solve it.
135x^2-152=0
a = 135; b = 0; c = -152;
Δ = b2-4ac
Δ = 02-4·135·(-152)
Δ = 82080
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{82080}=\sqrt{144*570}=\sqrt{144}*\sqrt{570}=12\sqrt{570}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{570}}{2*135}=\frac{0-12\sqrt{570}}{270} =-\frac{12\sqrt{570}}{270} =-\frac{2\sqrt{570}}{45} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{570}}{2*135}=\frac{0+12\sqrt{570}}{270} =\frac{12\sqrt{570}}{270} =\frac{2\sqrt{570}}{45} $
| a3=3a | | 7(-1-7n)=19 | | 152=135x^2 | | -x+9=-29-x | | 3(x=5)+8=122 | | 24+3r=6(1+r) | | 9(-4x+16)=-12(-12=3x) | | 5a-16=3a-8 | | 20=(v/2)-9 | | 2y(4y)+6y=14y^2 | | 2(x+4)=3+x-2) | | 5^x-7=125^2x+1 | | -10x-6+12x=-4 | | (1,20-x)^2=16(x^2) | | -11+7x=13+6x | | 8x-15-6x-23=-2 | | 8(3x-4)=71 | | 18x+6=3(6x- | | 50x=12500 | | 50x=12,500 | | -9x-10+11x+13=2 | | 6x+24=8x+7 | | -2(x+7)=20 | | -2(x+7=20 | | 20-6n=4(n+8)-7n | | 3x+4(-3x+30)=48 | | x-2=0.83 | | 7x-7=-105 | | u/5+13=33 | | 52=4v-16 | | c=2(3.14)4^2 | | 2v-4v=-12 |